引言
轮式小车是智能小车机械结构的主体部分,由车身、轮子、变速器、传动轴等结构部件构成。轮式小车还包括提供动力的驱动器,用来收集智能小车的自身状态信息或外部环境信息,并对多传感器的数据进行分析、融合,动态调整小车的运动状态,实现在一定条件下的自主行驶。
硬件设计
图1是智能车总体的设计方案及组成原理。微处理器采用了16位SPCE061A单片机,以此为核心设计了红外传感模块、电机驱动模块、PI控制器及相关的显示指示模块。

图1 智能车总体的设计方案
轮式小多层片式电感器车机械结构的设计
智能小车机械结构包括车轮、车身、转向舵机、驱动器和各种传动机构等。小车车身主体由2mm厚的有机玻璃组成。小车有三个车轮,其中后面的两轮为驱动轮,分别有独立的直流电机驱动。
若直接将直流电机输出轴连接小车的轮胎,会出现电机的转矩偏小、小车的动力差等缺点,采用PWM直流电机调速方法又会使电机的输出转矩在原有压降的基础模压电感器上又有所下降。为了解决转矩速度之间的矛盾,笔者设计了二级定轴轮系转动减速装置,其结构示意图如图2所示。

图2 减速机构原理图
其中齿轮均为圆柱直齿轮。若主动轴用1表示,末轮以K表示,轮速为ω,圆柱直齿轮啮合次数为m,则上述轮系机构的传动比ilk为

(1)
此处电机输出轴是主动轴,车体轮胎模压电感器是从动轴。
其中一级变速主动轮齿数Z1主=11,从动轮齿数Z1从=35;二级变速主动轮齿数Z2主=11,从动轮齿数Z2从=40;圆柱直齿轮啮合次数为m=2。可以计算出ilk=11.5。红外传感器
红外传感电路采用反射式红外传感器,可以方便地实现实时共模电感监控并有效防止误触发,灵敏度容易控制。图3为红外检测电路,核心IC器件是LM393,该集成块内部装有两个独立的电压比较器。

图3 红外检测电路
LM393类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端(用“+”表示),另一个称为反相输入端(用“-”表示)。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压,另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端的电压差大于10mV就能确保输出能从一种状态可靠地转换到另一种状态。因此,把LM339用在弱信号检测等场合是比较理想的。测速反馈电路由发光二极管、光电级管、单稳态电路以及装在主轴上的光电码盘组成。当光码盘上的孔经过发光二极管时,发光二极管发出的光使光电三极管导通,输出高电平;当光码盘上的非孔部分经过光二极管时,光电极管截止,输出低电平。产生的周期性脉冲经单稳电路整形送高速输入通道IOB2或IOB3外部中断源,取得每次上升沿的时间值, 就是定时器T1的值,每两次T1上升沿值之差为光电脉冲周期,从而可计算出主轴的转速。
电机驱动电路
微型直流电机以其良好的线性特性、优异的控制性能和非常高的效率广泛应用于小功率系统中。为了控制直流电机,本文采用PWM控制。SPCE064A的I/OB特殊功能IOB8 、IOB9就直接提供了两个PWM输出口,直接输出控制信号即可,无须另加电路。考虑到电压、电流的等级及尺寸、外观因素,本文采用L298代替三极管构成驱动电路,如图4所示。
一种基于TS201的归一化互相关快速算法0 引言 图像匹配指在已知目标基准图的子图集合中,寻找与实时图像最相似的子图,以达到目标识别与定位目的的图像处理技术。由于归一化互相关算法的实现方案简单,对灰度值的线性变化具有适应性、抗白噪声能力强,
EMI产生机理及解密电磁干扰 EMIElectromagneticInterference),有两种:传导干扰和辐射干扰。 传导干扰主要是电子设备产生的干扰信号是通过导线或公共电源线进行传输,互相产生干扰。 进一步细分,传导干扰又分共模干扰和差模干扰这里说一下EMI的传播过程,这个是说EMI的传播过程,干扰源-干扰途径-接收器。 干扰源可以理解成你的设备发现来的干扰,经过的传染途径,对于电源来说,一般只能从两方面下手,减少干扰源,或切断干扰途径,最后一个一般不用管。 大家顶起来啊,要是有