随着移动事业的迅猛发展,特别是CDMA和第三代移动通信技术的发展,使得系统对功放线性的要求越来越高。在移动通信系统中,为了滤波电感保证一定范围的信号覆盖,我们通常使用功率放大器来对信号放大,进而通过射频前端和天线系统发射出去。而电感厂家在CDMA或WCDMA以及TDSCDMA的基站中,如果采用一般的高功放(通常工作于AB类),将由于非线性的影响产生频谱再生效应,为了较好的解决信号的频谱再生和EVM(误差矢量幅值)问题,就必须对功放采用线性化技术。不仅如此,功放在基站放大器中的成本比例约占50%,如何有效、低成本地解决功放地线性化问题就显得非常重要。
1、超线性功放解决方案的提出
传统解决功放的线性的方法多数是采用功率回退的方法来保证功放的互调分量也就是保证功放工作在线性范围,从而不影响信号的覆盖以及通信。图1给出了关于三阶截点、1dB压缩点以及三阶互调随输入功率的变化曲线。

图1、分贝压缩点输出功率
从图中可以看出,传统的解决方法就是通过将输入功率降低,如果输入功率降低1dB,那么系统的互调分量将会好2dB,依次类推,就是说为了保证线性,对于CDMA或者WCDMA的功放,我们只能用100W的放大管子来出5W功率。但是由于管子是为100W设计的,其静态工作点仍旧很高,静态电流依然很大。所以,功放整体电流会很大,电流大意味着功放的效率很低,将会有很大一部分热量只能释放到管子以及电路板上,这些热量既是一种能量的浪费,更重要的是会造成降低芯片的使用寿命。利益方面,能提供如此大功率的放大管子的价格是非常昂贵的。
基于以上这些考虑,同时单纯的功率回退所能获取的互调是有限的,随着功率的进一步增高,仍旧依靠功率回退是不能解决问题的。所以,这里提出一种前馈预失真的设计方案来同时解决线性、效率以及成本问题。
2、前馈预失真功放设计方案
目前较为成熟和流行的超线性解决方案包一体电感括前馈技术、预失真技术(包括模拟预失真和基带预失真)、反馈技术等方法。考虑到单纯采用前馈技术对误差功放的要求较高并不能降低太多成本和提高太多的效率,单纯的采用预失真技术虽然可以提高线性和效率但并不能达到超线性的要求。结合两项技术的有缺点,这里提出一种前馈结合预失真的技术。详细的原理框图见图2。

图2 前馈预失真方案框图
如图2所示,输入信号首先通过定向耦合器一路经过延时线准备和输出信号进行抵消,从而检测对消的情况,另一路送入预失真单元(PD)中产生失真信号,从而改善主功放的线性程度。同时主功放的输出耦合一部分同经过延时的主信号进行对消,去除主信号,仅仅保留误差信号,通过功分器,一方面作为对消效果的检测从而作为闭环控制的参考,;另一方面送入误差功放放大在与主功放耦合对消互调信号,从而进一步改善互调。这里如果改善效果仍旧不理想,达不到超线性的要求即70dBc的话,可以将前馈环在增加一级,够成3或4级环,从而提高改善效果。
上述仅是开环的方案,考虑到由于输入功率、温差模电感度等因素都可以影响对消效果,这里必须设计一个闭环的控制环节,使得系统中的衰减器和移相器能够根据环境参数的改变,自动跟踪变化,电感厂家自动适应调节,从而保证整体的线性要求。
闭环的实现首先是建立在对整个环内若干个参考点的采样来指导各个常数的变化,包括输入功率,输出误差功率,环境温度,主信号与误差信号对消情况等若干个因素决定各个参数的变化。同时,系统要求自适应算法的反映速度必须在20ns之内,才能保证一旦参数发生变化,整体互调能及时跟踪变化。避免出现短时的互调变差的现象。
下面将分各个单元分别介绍系统的实现方法以及核心技术问题。
2.1、预失真产生单元(PD)
预失真部分采用的是模拟预失真方案。该方案已经通过前期试验论证,对于600KHz的双音信号互调可以改善15dB以上,对于1.28MHz的调制信号,ACPR可以改善10dB以上。预失真产生单元的整体框图如图3所示。扁平线圈电感制造厂
小白问各位老师几个问题,大家不要笑话我(DC110V转 是这样的,我们公司做列车车载装备的,列车供电110VDC,我们产品用电有24V、12V、5V。然后我们用到的电源都是买成品,或者那种叫半砖的电源模块。成本非常高,一个5V10A的成品电
3-5串动力电池保护板那家质量比较过硬的,介绍一3-5串动力电池保护板那家质量比较过硬的,介绍一下。
请问谁用过OB2269 SOP封装做过150W的反激式电请问谁用过OB2269 SOP封装做过150W的反激式电源吗做不了这么大吧@edie87@163.com 你有做过吗 我现在调试到120W就保护了这个IC只做65W的,要做大功率就得加图腾这个IC大概也